You are here: Home Contents V19 N3 V19N3_Dweik.html
Personal tools

Review of AES Methods and Suggested Abstract Ciphering for Secured Image Data Communication in IoT and AI Applications



Full text

Journal of Information Systems Security
Volume 19, Number 3 (2023)
Pages 169182
ISSN 1551-0123 (Print)
ISSN 1551-0808 (Online)
Haneen Dweik — Palestine Polytechnic University, Palestine
Mohammed Abutaha — Palestine Polytechnic University, Palestine
Adnane Cabani — Normandie Univ, UNI Rouen, ESIGELEC, IRSEEM, 76000 Rouen, France
Karim Hammoudi — Université de Haute-Alsace, IRIMAS, Mulhouse, France; Université de Strasbourg, France
Information Institute Publishing, Washington DC, USA




This paper presents a brief review of ciphering methods for secure image communications in the contexts of Internet of Things (IoT) and artificial intelligence. With the rapid advancements in mobile computing and the diversity of public data storing devices, ensuring robust security mechanisms has become a critical area of focus. We acknowledge the importance of historical context and the evolution of encryption/decryption approaches, and we aim to establish a systematic understanding of lightweight image encryption in IoT applications. To this end, a use case for AES image encryption will be highlighted to provide practical insights. Moreover, an abstract ciphering approach is suggested towards limiting the imagerelated de-anonymization attacks which can occur over publicly shared trained image sets.




Internet of Things (IoT), Lightweight Cryptography, Image Encryption, Image Decryption, Advanced Encryption Standard (AES), Artificial Intelligence, Image De-anonymization, Security.




Alaba, F. A., Othman, M., Hashem, I. A. T., and Alotaibi, F. (2017). Internet of Things security: A survey. Journal of Network and Computer Applications, 88, 10–28. doi:10.1016/j.jnca.2017.04.002

Alshammari, B. M., Guesmi, R., Guesmi, T., Alsaif, H., and Alzamil, A. (2021). Implementing a Symmetric Lightweight Cryptosystem in Highly Constrained IoT Devices by Using a Chaotic S-Box. Symmetry, 13(1), 129. doi:10.3390/sym13010129

Alshehri, F., and Muhammad, G. (2021), A Comprehensive Survey of the Internet of Things (IoT) and AI-Based Smart Healthcare. IEEE Access, 9, 3660-3678. doi:10.1109/ACCESS.2020.3047960

Bogdanov, A., Khovratovich, D., and Rechberger, C. (2011). Biclique Cryptanalysis of the Full AES. D. H. Lee and X. Wang (Eds.), Advances in Cryptology – ASIACRYPT 2011 (pp. 344–371). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-25385-0_19

Chowdhary, C. L., Patel, P. V., Kathrotia, K. J., Attique, M., Perumal, K., and Ijaz, M. F. (2020a). Analytical Study of Hybrid Techniques for Image Encryption and Decryption. Sensors, 20(18), 5162. doi: 10.3390/s20185162

Chowdhary, C. L., Patel, P. V., Kathrotia, K. J., Attique, M., Perumal, K., and Ijaz, M. F. (2020b). Analytical Study of Hybrid Techniques for Image Encryption and Decryption. Sensors, 20(18), 5162. doi: 10.3390/s20185162

Daemen, J. and Rijmen, V. (2002). The data encryption standard. The Design of Rijndael: AES—The Advanced Encryption Standard, 81–87.

Device (ZigBee) Security Study. (2020). HKCERT. Dhanda, S. S., Singh, B., and Jindal, P. (2020). Lightweight Cryptography: A Solution to Secure IoT. Wireless Personal Communications, 112(3), 1947–1980. doi:10.1007/s11277-020-07134-3

Dworkin, M. J. (2023). Advanced Encryption Standard (AES) (NIST FIPS 197-upd1; p. NIST FIPS 197-upd1). Gaithersburg, MD: National Institute of Standards and Technology. doi: 10.6028/NIST.FIPS.197-upd1

Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A., and Uhsadel, L. (2007). A Survey of Lightweight-Cryptography Implementations. IEEE Design & Test of Computers, 24(6), 522–533. doi: 10.1109/MDT.2007.178

Hammoudi, K., Abu Taha, M., Benhabiles, H., Melkemi, M., Windal, F., El Assad, S., and Queudet, A. (2020). Image-Based Ciphering of Video Streams and Object Recognition for Urban and Vehicular Surveillance Services. X.-S. Yang, S. Sherratt, N.

Dey, and A. Joshi (Eds.), Fourth International Congress on Information and Communication Technology (pp. 519–527). Singapore: Springer. doi: 10.1007/978-981-32-9343-4_42

Hammoudi, K., Benhabiles, H., Melkemi, M., and Dornaika, F. (2018). Detection Systems for Improving the Citizen Security and Comfort from Urban and Vehicular Surveillance Technologies: An Overview. In A. Longo, M. Zappatore, M. Villari, O. Rana, D. Bruneo, R. Ranjan, M. Fazio, and P. Massonet (Eds.), Cloud Infrastructures, Services, and IoT Systems for Smart Cities (Vol. 189, pp. 37–45). Cham: Springer International Publishing. doi: 10.1007/978-3-319-67636-4_5

Hammoudi, K., Cabani, A., Melkemi, M., Benhabiles, H., and Windal, F. (2018). Towards a Model of Car Parking Assistance System Using Camera Networks: Slot Analysis and Communication Management. 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), 1248–1255. doi:10.1109/HPCC/SmartCity/DSS.2018.00210

Harbi, Y., Aliouat, Z., Refoufi, A., and Harous, S. (2021). Recent Security Trends in Internet of Things: A Comprehensive Survey. IEEE Access, 9, 113292–113314. doi:10.1109/ACCESS.2021.3103725

IEEE Std 802.11i-2004. (2004). IEEE Standard for information technology-Telecommunications and information exchange between systems-Local and metropolitan area networks-Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Amendment 6:Medium Access Control (MAC) Security Enhancements. IEEE Std 802.11i-2004, 1–190. doi: 10.1109/IEEESTD.2004.94585

Jena, B. K. (2021, July 27). What Is AES Encryption and How Does It Work? - Simplilearn. Simplilearn.Com. Retrieved from Ji, B., Wang, L., and Yang, Q. (2014). New Version of AES-ECC Encryption System Based on FPGA in WSNs. Journal of Software Engineering, 9(1), 87–95. doi:10.3923/jse.2015.87.95

Kansal, S. and Mittal, M. (2014). Performance evaluation of various symmetric encryption algorithms. 2014 International Conference on Parallel, Distributed and Grid Computing, 105–109. doi: 10.1109/PDGC.2014.7030724

Kasraoui, M., Cabani, A., and Chafouk, H. (2014). IKEv2 Authentication Exchange Model in NS-2. 2014 International Symposium on Computer, Consumer and Control, 1074–1077. doi: 10.1109/IS3C.2014.280

Kasraoui, M., Cabani, A., and Chafouk, H. (2015). Collaborative Key Exchange System Based on Chinese Remainder Theorem in Heterogeneous Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 11(11), 159518. doi:10.1155/2015/159518

Kaufman, C. (2005). Internet Key Exchange (IKEv2) Protocol (No. RFC4306; p. RFC4306). RFC Editor. doi: 10.17487/rfc4306 Hosny, K. M., Zaki, M. A., Lashin, N. A., Fouda, M. M., and H. M. Hamza (2023), Multimedia Security Using Encryption: A Survey. IEEE Access, 11, 63027-63056, doi:10.1109/ACCESS.2023.3287858.

Naif, J. R., Abdul-Majeed, G. H., and Farhan, A. K. (2019). Secure IOT System Based on Chaos-Modified Lightweight AES. 2019 International Conference on Advanced Science and Engineering (ICOASE), 1–6. doi:10.1109/ICOASE.2019.8723807

Nasraoui, L., Cabani, A., and Trimech, H. (2022). Implementing lightweight key exchange solutions for WSN with LoRa connectivity. International Journal of Sensor Networks, 39(3), 192–204. doi: 10.1504/ijsnet.2022.124569 Padgette, J., Bahr, J., Batra, M., Holtmann, M., Smithbey, R., Chen, L., and Scarfone, K. (2022). Guide to Bluetooth Security. National Institute of Standards and Technology. doi:10.6028/NIST.SP.800-121r2-upd1

Rana, M., Mamun, Q., and Islam, R. (2022). Lightweight cryptography in IoT networks: A survey. Future Generation Computer Systems, 129(C), 77–89. doi:10.1016/j.future.2021.11.011

Rana, S., Hossain, S., Imam, H., and Mohammod, Dr. (2018). An Effective Lightweight Cryptographic Algorithm to Secure Resource-Constrained Devices. International Journal of Advanced Computer Science and Applications, 9(11). doi:10.14569/IJACSA.2018.091137

Rescorla, E. (2018). The Transport Layer Security (TLS) Protocol Version 1.3 (No. RFC8446; p. RFC8446). RFC Editor. doi: 10.17487/RFC8446

Rivest, R. (1992). The RC4 encryption algorithm. Retrieved from

Stallings, W. (2017). Cryptography and network security: principles and practice (Seventh edition). Boston Munich: Pearson.