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Abstract

Network attacks have become a significant threat to organiza-
tions and effective intrusion detection systems have to be developed
detect these attacks before they inflict harm to the internal network in-
frastructure.  Denial of service (DoS) and probing attacks are the most
common attacks. While time-based traffic features provide information
to identify attacks, size-based traffic features enhance the identification
accuracy. In this study, we add a size-based feature to an existing time-
based feature intrusion detection system. The system is tested on a
data set that includes both normal traffic and attack traffic from different
types of attacks. The results indicate that size-based feature increases
the accuracy of prediction. We also used meta-classification schemes
such as bagging and boosting to examine if they improve the perfor-
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mance. The improvement in accuracy was only marginal compared to
the combined model that includes both time-based and size-based
features.

Keywords: Intrusion detection, network security, data mining,
network attacks, induction tree algorithm

Introduction

Information technology has dramatically changed our lives, but
has also made us very dependent on a technology that is vulnerable to
attacks. Network security has become a key issue for most organiza-
tions as extensive waves of attacks and intrusions on servers and
client machines are becoming common place (Durst et al. 1999).
Intrusions are any set of actions that attempt to compromise the
integrity, confidentiality, or availability of network resource. Organiza-
tions take various actions to prevent or reduce intrusions into their
networks without compromising on the basic objective of networks, i.e.
facilitating communication among users. Various techniques such as
user authentication, information protection through encryption,
physical security, defensive programming techniques, training of users
on basic security awareness, and intrusion detection are used to create
various defense mechanisms to reduce the impact of attacks on
network resources.

An important tool available to the network administrator is an
intrusion detection system (IDS) that acts as an early warning system
that detects intrusions. They serve an important function in the network
infrastructure acting as gatekeepers and checking for suspicious
activity. They need to be adaptive and learn about new attack
techniques as they occur and respond to them. Also, IDS have to be
accurate since they have to detect attacks without raising many false
alarms that could become an impediment to the actual functioning of
the network.

Intrusion detection systems (IDS) can be located on the host or
on the network (Lippmann et al., 2000a, 2000b). Network based
intrusion detection systems, unlike host based systems, examine all
the packets traveling the network to identify possible intrusions. The
typical attacks detected by network IDS are denial of service (DOS)
and probing attacks. These attacks are normally synchronized and
therefore have certain unique time-based features.  Lee and Stolfo (2000)
describe the various time-based features of network traffic that can be
monitored to detect an attack. They have a threshold "count" of number
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of connections in a fixed time period (2 secs) to determine if an attack is
imminent. However, the normal traffic can widely vary during different
times of the day and during different days of the week, to raise some
false alarms. A size-based feature that incorporates specific character-
istics of the attack packets can help to improve the prediction accuracy.
Hence, the major objectives of this study are:
• To develop an IDS with "size-based" traffic feature

• To compare the effectiveness of time-based and size-based IDS
on actual intrusion data
The paper is organized in eight sections. Section two  provides a

brief background of research in IDS; sections three and four describe
the time-based features and size based features respectively; section
five describes the data mining algorithms; section six discusses the
research experiment and section seven discusses the results; the last
section presents a summary of our findings, limitations, and research
implications.

Background

Research on IDS has been extensive starting from a seminal
paper on intrusion detection by Denning (1987). Much of the research
on IDS is based on tools that incorporate new ideas for detection based
on the attack characteristics. An extensive survey of research on IDS is
available in Allen et al., (2000).  Intrusion detection, based on their
detection method, can be broadly divided into two categories: misuse
detection and anomaly detection. Misuse detection system detects
attacks based on well-known vulnerabilities and intrusions stored in a
database (a.k.a. signatures), while anomaly detection system detects
deviations in activity from normal profiles.  Misuse detection systems
such as EMERALD (Porras & Neumann, 1997), TIM (Teng et al. 1990),
IDIOT (Kumar and Spafford, 1995), use patterns or signatures of well-
known attacks to match and identify intrusions. Various techniques
including rule-based expert systems, model-based reasoning systems,
state transition analysis, genetic algorithm, and fuzzy logic have been
used for detection (Carrettoni et al., 1991, Garvey & Lunt, 1991, Ilgun et
al. 1995, Porras & Valdes, 1998). A good example would be failure of
account login for more than 3 times due to wrong password. The
intrusion signature (login fails three times) is matched with the audit
data, and then the detector flags intrusion and sets off an alarm.
Although misuse detection allows sensors to collect a more tightly
targeted set of system data, thereby reducing the system overhead, its
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inability to detect novel attacks, which do not have matched patterns or
signatures in IDS's database constrains its effectiveness.

Anomaly detection system detects deviations from normal
behavior, and based on a threshold value determines if it is normal or
abnormal behavior. Although the knowledge of the pattern of a specific
attack is not required, it needs to establish a normal usage profile to
compare. For example, the normal usage profile may contain the
average frequency of certain system call a user uses in a session. If the
frequency is either too high or too low then an anomaly alarm is
triggered. However an anomaly detection system tends to generate more
false alarms, because it cannot correctly classify a new normal
behavior. There are various approaches for anomaly detection
including statistical analysis, sequence analysis, neural networks,
machine learning, and artificial immune system (Bonifacio et al. 1997;
Lee et al., 1998) that tries to identify patterns from large volumes of
data to detect attacks. Since intrusions are normally based on a series
of activities, sequence analysis, which examines a sequence of calls or
activities rather than a single call, works better in detecting intrusions
(Hofmeyr et al., 1998). Modern intrusion detection systems combine
both approaches to identify intrusions (Anderson et al., 1995).

Since IDS is essentially a warning system, accuracy is critical to
ensure all intrusions are identified without raising too many false alarms.
Extensibility and adaptability are also critical in today's network
computing environment. There are multiple "penetration points" that
can be used to attack a network system including network devices such
as routers and switches, servers, clients, and the general network. For
example, at the network level, a malicious IP packet can crash a host;
at the host level, vulnerabilities in system software can be exploited to
yield an illegal root shell. Since activities at different levels are usually
recorded in different audit data, an IDS often needs to be extended to
include modules that incorporate the specialized knowledge of
intrusion on all these attack points. They also need to be adaptable so
that new rules and features are easily added as new attacks are
identified. Building an effective IDS is an enormous knowledge
engineering task. Although modern techniques like data mining can help
to generate rules and create patterns in intrusion detection, system
builders' intuition and experience are still important. Experts first
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analyze and categorize attack scenarios and system vulnerabilities, and
then hand-code the corresponding rules and patterns.

Time based traffic features

Intrusion detection involves analyzing audit or traffic data to
recognize patterns that relate to intrusive behavior. Much of research
on anomaly detection in IDS have focused on improving the accuracy
of prediction by incorporating features that better describe the attacks
and efficient  algorithms to examine the large volumes of data. Lee and
Stolfo (2000) describe an IDS that uses a time-based traffic feature to
recognize attacks. Their study examines the TCPDUMP data for
patterns to identify potential attacks. For example, in SYN flooding many
machines with spoofed addresses attack a host, generating similar
packets to the same destination. Denial of Service (DoS) and Probing
attacks establish multiple connections to the same host and/or same
port in a very short period of time and therefore exhibit packet traffic
patterns that can be easily identified. A count of the number of packets
within a certain time interval would be able to differentiate a normal
traffic pattern of clients requesting connection to a server versus an
attack. The time based feature provides warning signs for various
attacks including SYN flooding, denial of service (DOS) attack, and
probing attack. It had been extensively tested by Lee and Stolfo (2000).
As our study builds on these features we present a brief summary of
their ideas. The attacks are classified by them into 4 categories:
- DoS - denial-of-service. e.g.:  teardrop, back, smurf, etc.;
- R2L - remote-to-local attacks, which involve unauthorized

access from a remote machine. e.g: guess_passwd, rootkit, spy,
etc.;

- U2R - user-top-root attacks, which involve unauthorized access
to local super user privileges by a local unprivileged user. e.g:
buffer_overflow, loadmodule, perl;

- Probing, surveillance and probing. e.g.:  satan, nmap, ipsweep.
DOS and Probing attacks have sequential patterns for short time

spans and therefore ideally suited for detection using "time-based
traffic" feature. R2L and U2R do not have sequential patterns that are
different from normal traffic. These attacks are embedded in the data
portion of the packets and normally carried out on a single connection.
Hence, pure time-based traffic feature may not be adequate and other
approaches are required to detect such attacks. Lee and Stolfo (2000)
developed "content-based traffic" features to detect R2L and U2R
attacks.
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TCPDUMP data provides packet level information that needs to
be pre-processed for data mining. Lee and Stolfo (2000) explain how
the raw TCPDUMP data is processed into network connection records
using a pre-processing program that captures the important features of
the connection (Paxson 1998). Network connection records that
contain information on source and destination host (src-host, dst_host),
source and destination ports (src_port, dst_port), data bytes sent and
received (src_bytes, dst_bytes), length of connection (duration), type
of protocol (protocol type),  type of service (service), and an indicator of
error status (flag).

The network connection records are then analyzed and summa-
rized. First the "same host" feature examines the connections in the
past 2 seconds that have the same destination host as the current
connection, and various statistics are calculated including a count of
connections, percentage of connections that have the same service
and different service as current one, percentage of SYN errors, and
percentage of REJ errors. Next, the 'same service" feature examines
connections in the past 2 seconds that have the same service as the
current connection and all statistics are calculated. The time-based traffic
features that are calculated by Lee and Stolfo (2000) are shown in
Table 1.

Feature Description Value Type

Count Number of connections to the same host
as the current connections in the past
2 seconds Continuous

The following features refer to these
same-host connections

serror_% % of connections that have "SYN" errors Continuous

rerror_% % of connections that have "REJ" errors Continuous

same_srv_% % of connections to the same service Continuous

Diff_srv_% % of connections to different services Continuous

Srv_count Number of connections to the same service
as the current connection in the past 2 seconds Continuous

the following features refer to same-service
connections

Srv_serror_% % of connections that have "SYN" errors Continuous

Srv_rerror_% % of connections that have "REJ" errors Continuous

Srv_diff_host_% % of connections to different hosts Continuous

Table 1. Traffic Features of Network Connection Records
(Lee and Stolfo, 2000)
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Packet size based traffic feature

A careful examination of raw TCPDUMP records during DoS and
probing attacks reveal that these attacks have two common character-
istics. They are:
- In a sequence of connections records, the connections involving

a DoS or Probing attack are continuous;
- The connection records in a DoS or Probing attack have the same

packet size for outgoing and incoming frames.
Typically, DoS and Probing attacks send packets of the same

length to the victim host, and receive packets of the same length from
the victim. These attack connections are more likely to appear together
in a sequence without the interference of the normal connections. On
the other hand, normal connections usually do not have the same packet
size in a long connection sequence. Hence, the "size-based traffic"
feature can be added to the "time-based traffic" feature to improve the
accuracy of intrusion detection. If a sequence of connections has the
same packet size for packets received and sent (src_bytes and
dst_bytes), it could indicate with a high probability of an occurrence of a
DoS or Probing attack.

Determination of Window Size

Since the system needs to assess a sequence of records to
determine if there is an attack, a sliding window is used to identify a set
of connection records for analysis. The window size is defined by the
number of connection records. In a continuous sequence, if there are n
or more connections that have the same src_bytes and dst_bytes, then
all these connections are labeled as 1 - "possible attack". Otherwise,
these connections are labeled as 0 - "possible normal". For illustration,
consider a continuous sequence of connection records, as shown in
Table 2.

In this example records 3 through 20 have the same src_bytes
and dst_bytes. The algorithm for a window size of 3 (n = 3) is as fol-
lows. First compare record 1 and record 2. Since these two records
have different src_bytes and/or dst_bytes, label record 1 as 0, but keep
record 2 unlabeled. Then compare record 2 and record 3. Label  record
2 as 0, and keep record 3 unlabeled. In the next step, we find record 3
and record 4 have the same src_bytes and dst_bytes. At this time, since
the window size is 3, we keep both record 3 and record 4 unlabeled and
go to compare record 4 and record 5. Since record 4 and record 5 have
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the same src_bytes and dst_bytes, we can label all these 3 records as
1. Then we check record 6, since it has the same byte feature as record
5, it should also be labeled as 1. Similarly, all the following connections
through record 20 should be also labeled as 1. After that,  record 21
should be labeled as 0 again. If record 5 has different src_bytes and/or
dst_bytes, record 3 and record 4 should also be labeled as 0. Since
there are no previous connections to compare with record 1, the label
for record 1 may not be correct. Hence, this connection record is not
considered for further analysis.

serial # … … src_bytes dst_bytes … Label

1 … … 100 200 … 0

2 … … 200 300 … 0

3 … … 200 400 … 1

4 … … 200 400 … 1

5 … … 200 400 … 1

… … … 200 400 … 1

20 … … 200 400 … 1

21 … … 120 150 … 0

… … … … … … …

Table 2. A Sequence of Sample Network Connection Records

There are two traffic scenarios that need to be considered in
determining the appropriate window size. Since we are collecting data
in a network environment it is possible that some normal connections
interfere in a sequence of continuous attack connections, and divide
the attack sequence into several sub-sequences. In each sub-sequence,
attack connections are still continuous. There are two possible cases in
this scenario.

Case 1: The size of each sub-sequence is big enough - window
size is smaller than or equal to the size of the attack sub-sequence, but
bigger than the normal sequence. In this case the "interference" of nor-
mal sequences will not affect the accuracy of intrusion detection as the
attack can still be detected. As shown in Figure 2 a sequence of attack
connections is separated by a sequence of normal connections (b) into
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two sub-sequences (a) and (c). Connections in (a) and (c) can be
correctly labeled if the sequence size is not less than the window size.
Connections in (b) can also be correctly labeled if its sequence size is
less than the window size.

Figure 2 : Interference of normal connections, case 1

Alternatively, as shown in Figure 3, the normal connections are
inserted into the attack sequence in such a way that splits the attack
connections into many small sub-sequences that is discretely distrib-
uted in the sequence. In this case the window size may be too big for
each sub-sequence leading to incorrect labeling of attacks. In this case
both "time-based traffic" features and "size-based traffic" feature
cannot easily detect the intrusions.

 Figure 2 : Interference of normal connections, case 2

Since the connection data is collected at the network level rather
than at the host level, a continuous sequence of network connections
with the same connection size may be for different destinations. If the
sequence size is smaller than the window size it will be correctly
labeled. If the sequence size is large, either due to large number of
destination and/or source sites, then mere evaluation of source and
destination packet size may lead to wrong inference. It may be
necessary to combine it with other "time-based traffic" features, which
are calculated based on the same-host and same-service counts.
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Window size is an important variable in determining the
accuracy of an IDS. It is possible that by selecting a wrong window size
we may label a normal connection as an attack (false positive) or an
attack as a normal connection (false negative). If the window size is
very small there is a greater probability of "false alarms" since some
routine normal packets can be mistaken for attacks. For example, with
a window size of 4, a sequence with 5 normal connections that have the
same src/dst_byte will be labeled as "possible attack". On the other
hand, if a window size is very big, "false negatives" are more likely to
occur since more records would be considered as normal. For example,
with a window size of 20, a sequence with 15 attack connections that
have the same size source and destination packets (src_byte, dst_byte)
will be labeled as "normal". False positive rate increases as the window
size decreases, and the false negative rate increases as the window
size increases. While we would like to reduce false negative it may
come at the cost of some false positive alarms. Hence, to determine
appropriate window size, we need to balance between false positive
and false negative rate.

Data mining algorithm

Data mining algorithms provides convenient tools to analyze vast
amounts of data on network traffic to identify patterns or associations
that can help to detect attacks. Some of the common algorithms used
in the intrusion detection field are statistical analysis, neural networks,
induction tree algorithms, and rough sets (Zhu et al., 2001). Induction
learning algorithms develop the knowledge structure using decision
trees. Each node in the decision tree is labeled with attributes and the
edge is labeled with the attribute value and the leaf is labeled with class.
The algorithm performs a top-down heuristic search through a problem
space and uses information gain as the criterion for selecting the branch-
ing attribute of a node. The ID3 algorithm (Quinlan, 1984) and its
improvement  C4.5 (Quinlan, 1993), are very popular algorithms in data
mining. A detailed discussion of the algorithm can be found in Quinlan
(1993).

The C4.5 algorithm constructs classification rules in the form of
a decision tree, recursively starting at the root. At each node, attribute
ai is selected to split the training data into subsets where ai = 0 or 1.
This algorithm is then invoked recursively on the two subsets of training
data until all examples in one node belong to the same class. At this
point, a leaf node is created and labeled as the expected value of the
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categorical attributes for the records described by the path from the
root to that leaf. The scheme used in decision tree learning for
selecting attributes is designed to minimize the depth of the final tree.
The idea is to pick the attribute that goes as far as possible toward
providing an exact classification of the dataset. All we need is a formal
measure of "fairly good" and "really useless". The measure should have
its maximum value when the attribute is perfect and its minimum value
when the attribute is of no use of all.

In general, the basic ideas are:
• In the decision tree each node corresponds to a non-categorical

attribute and each arc to a possible value of that attribute. A leaf
of the tree specifies the expected value of the categorical
attribute for the records described by the path from the root to
that leaf.

• In the decision tree, each node should be associated with the
non-categorical attribute which is most informative among the
attributes not yet considered in the path from the root.

• Entropy is used to measure how informative node is.

 The data mining system used in this experiment is the Waikato
Environment for Knowledge Analysis (WEKA) system, which was
developed at the University of Waikato, New Zealand (Witten and Frank
2000). WEKA is a collection of machine learning algorithms that can
either be applied directly to a dataset or called from your own Java
code. It contains tools for data pre-processing, classification,
regression, clustering, association rules, and visualization. It is also
well-suited for developing new machine learning schemes. WEKA
provides an easy to use interface to specify a subset of attributes for
the analysis from a larger set of attributes in the dataset. In this study
an induction tree algorithm (J48), a version of C4.5 (Quinlan  1993),
that is extensively used in data mining was employed.

Research Experiment

Data

The data set used for this experiment was obtained from the
Third International Knowledge Discovery and Data Mining Tools
Competition (KDD CUP), which was held in conjunction with KDD-99,
the Fifth International Conference on Knowledge Discovery and Data
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Mining (Hettich, and Bay 1999). The original data was obtained from a
real-world military network environment with simulated intrusions. The
training and test data had different distributions of classes. The raw
tcpdump data was obtained from MIT Lincoln Lab and was pre-pro-
cessed to include "time-based traffic" features (Lee and Stolfo, 2000).
Since the full training data set is very big (743MB uncompressed), only
10% of the data was used in this study. The training data contains
494,021 connection records, of which 392,970 connections are involved
in attack. The testing data set contains 311,039 connections, of which
250,436 are attacks. Besides the attacks listed in the training data, the
testing data also includes some new attacks. Both training and testing
connections are already correctly labeled as "normal" or "attack".

Selection of Window Size

Since window size has a significant impact on classification
accuracy it is necessary to determine the optimal window size. Multiple
experiments were conducted with varying window sizes and the
classification rate was analyzed to determine the optimal window size.
Window size was initially set at 10 connections and changed in
increments of 10 connections. Based on the "size-based traffic" feature
each connection was labeled as 0 (normal) or 1 (attack).  Since the
original data set was too large, a smaller sample was used to
determine the optimal window size. Multiple rounds with different
window sizes were processed using the induction tree algorithm to
assess the accuracy in prediction.

Each round used the same set of 50,000 records to enable cross
comparison across different window sizes. In order to check if these
50,000 records are a fair representation of the population we compared
the proportion of attack-free records in the population and in the
subset. It both cases it was around 20% ensuring that the sample was
a good representation of the population.

It was necessary to ensure that the sample was representative
of the original data set. It was not good to split the original data set into
some small pieces and choose one of them for our experiment,
because the connection records in each subset were still continuous,
and the attack and normal features were not equally distributed. In other
words, it was very possible that we could get a sub data set with the
"size-based traffic" labels all set as 0 or 1.  A better way to create a
sample data set was to randomly choose connection records from the
original data set.
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First, several copies of the full sized data set were created. Each
copy had the new "size-based traffic" feature generated with a different
window size. After that a series of  random numbers were generated
and added to each connection record. Then the full sized data sets
were re-ordered according to these random numbers. 50,000 records
were selected from each of these full sized data sets and used in the
data mining algorithm. Since all the records in the full sized data set has
been re-ordered according to the same random number, the same
50,000 records were selected in each round from the full sized data
sets.

Figure 3 and 4 illustrates the changes in classification rate and
false alarm rate for different window sizes.

Figure  3. Classification rate

Figure 3 indicates that the classification rate initially increases as
the window size increases, and after it reaches a peak with a window
size of 40 it begins to decrease with further increase in window size. A
window size of 40 connections provides the best classification rate. In
all our subsequent experiments a window size of 40 is used.

Figure 4. Comparison of false positive and false negative rate
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Figure 4 shows that the false positive rate increases as the
window size decreases, and the false negative rate increases as the
window size increases.  These two figures provide us useful
information to select the appropriate window size. We notice that the
change in false positive or false negative is relatively less beyond a
window size of 40.

Result and Discussion

The experiment was conducted in three rounds. In the first round,
"time-based traffic" feature was used in prediction; in the second round
"size-based traffic" feature was used; and in the third round, the two
features were combined for prediction. After these three rounds, the
classification rates were compared. A window size of 40 was used for
all experiments. We randomly ordered the records in the data set in
order to make sure that any sample training set we retrieved from the
complete data set was representative of the population.

Since WEKA has constraints on the size of the datasets, we split
both the training and testing data sets into several data subsets. Each
subset contained 35,000 connection records, except the last subset.
We used the same training set and used the model it generated to test
all the testing subsets. After we finished evaluating all testing subsets,
we added up all correctly labeled connections to calculate the final clas-
sification rate. Each training/testing pair is run three times separately
for the three rounds of experiment. The results of the experiments are
shown in Table 3.

"time-based "size-based "time-based feature"+
feature" alone feature" alone  "size-based feature"

(Round 1) (Round 2) (Round 3)

normal labeled as normal 59,734 59,027 59,008

normal labeled as attack 859 1,566 1,585

attack labeled as normal 56,352 25,008 23,494

attack labeled as attack 194,084 225,428 226,942

total connections 311,029 311,029 311,029

total correctly labeled 253,818 284,455 285,950

Classification rate 81.6059% 91.4561% 91.9368%

Table 3. A comparison of classification rate with/without
"size-based traffic" feature.

From Table 3 we can see that "size-based traffic" feature has a
better classification rate (91.4%) compared to the "time-based traffic"
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feature (81.6%). Combining the two features further improves the
classification rate, although only marginally (91.4% to 91.9%).

It was surprising that "size-based traffic" feature had a better
classification rate compared to time-based traffic feature. It could be
related to the type of attack. Most of the attack in this data set was DoS
or probing attacks that have the same packet size pattern. On further
analysis of the data set we found testing data subset 6 was primarily
responsible for the differences in the classification rate. The testing
subset 6 has a 99.6% attack rate and primarily contained neptune and
smurf attacks. These attacks were much better detected by "size-based"
traffic feature compared to 'time-based" traffic feature. If we analyze
decision tree in the 1st round test for the attributes that are important,
we find that "count" of the "time-based traffic" features plays a very
important role in classifying a connection. Since in 'time-based' feature
we used fixed time intervals (2 seconds) rather than window size to
determine the count, it is possible that traffic levels (no. of connections/
second) may have affected the detection accuracy. A threshold count
based on high traffic DOS attacks may not recognize low traffic attacks,
which may have a large number of same size packets, but spread over
a longer time period. On the contrary, the window size of "size-based
traffic" feature defines a lower bound based on traffic, not on time, thereby
making it more flexible and adaptable under different situations. For
example, no matter how many attack connections come together
during network congestion, if the sequence size is not less than the
window size, the "size-based traffic" feature always give a correct label.

The decision tree generated by the induction algorithm provides
information on how the model reaches its final prediction. The tree
indicates that the first decision point tests for "size-based traffic"
feature, and branches into two possible outcomes ("0-possible normal"
and "1-possible attack"). On both branches the tree has a number of
tests based on "time-based traffic" attributes before it reaches a leaf
with a final prediction. The total number of tests (nodes) in the "possible
attack" branch is significantly lesser than the total number of tests in the
"possible normal" branch. This indicates that an attack with the
same-packet-size pattern can be quickly detected, while an attack
without this pattern will go through more decision points or nodes
before it is labeled as normal or attack. The decision tree indicates that
while "size-based" traffic feature is fast in identifying some attacks,
"time-based traffic" features are required to detect other attacks.
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7.1 Meta-Classification

Meta-learning is a mechanism for inductively learning the
correlation of predictions by a number of base classifiers (Chan and
Stolfo 1993, Fan et al. 2002). Meta-learning uses a learning algorithm
and a fixed training set, and repeatedly applies the algorithm to
different subsets of the training set or using different random choices
within the algorithm in order to get a large ensemble of machines. The
machines in the ensemble are then combined in some way to define
the final output of the learning algorithm (e.g. classifier). The common
meta-learning techniques are bagging, boosting and stacking. Bagging
is used to combine classifiers generated by the same algorithm but on
different data sets. Boosting also uses the same algorithm on different
data sets, but it will give different weight to different classifiers. Stacking
is used to combine classifiers based on the same data set but different
algorithms. Unlike bagging and boosting, stacking is not widely used in
practice, because if the majority of the algorithms perform poorly, the
meta-result will also be poor. Another reason is that it is somewhat
difficult to explain its result. Previous research has shown that an
ensemble is often more accurate than any of the single classifiers in
the ensemble (Optiz et al 1999).

Prior research indicates that that boosted and bagged versions
of C4.5 produce more accurate classifiers than standard versions
(Quinlan 1996). Bagging reduces the variance of the classification
algorithms while boosting reduces both the bias and variance in the
results (Bauer and Kohav 1999). Drucker et al (1994) have shown that
as the size of the training set increases, the training error decreases for
the boosting algorithms.

The meta-classification algorithm we used in this experiment is
bagging and the base classification algorithm is C4.5. In this step we
added additional training sets (10) and included other features like "host-
based traffic" and "content-based traffic" features (Lee and Stolfo 2000)
to further improve the classification rate and detect a wide range of
attacks including U2R and R2L attacks. U2R is unauthorized access to
local superuser privileges by a local unprivileged user and R2L is unau-
thorized access from a remote machine.

We first wrote a script that can directly call WEKA's classes, so
that we can extract the classified label of each single testing record.
Since there are 11 training sets, each single testing record can have 11
classified labels. Then the majority voting method is used to find out the
final classified label. For example, if at least 6 training sets assign "1" to

Ye, Premkumar, Zhu JISSec34



adfh

a testing record, the final classified label will be "1"; otherwise the label
would be "0". After that, this label is compared with the correct label to
determine the meta-classification rate. The meta-classification rate was
93.62%.  The rate was better than the rate obtained from the three
rounds. However, the improvement was marginal compared to the
size-based feature or the combined method.

Conclusion

Network attacks have become a significant threat to
organizations and effective intrusion detection systems have to be
developed to detect these attacks before they inflict harm on the
internal network infrastructure.  The characteristics of some common
attacks and time-based features developed by Lee and Stolfo (2000)
for detecting them were analyzed. The application of this new feature in
some scenarios is also discussed. Since some of these attacks have
similar packet size characteristics an intrusion detection system using
the size-based feature was developed. The key idea is to compare the
packet size in a sequence of continuous connections. After determining
the optimal window size for analysis, the data set was pre-processed
for the optimal window size and an induction algorithm was used to
detect intrusions. The pre-labeled data was split into training and
testing data set. The training data set was used to teach the system
about various attacks. Three rounds of experiment were conducted with
size-based feature, time-based features, and a combination of the two
features. The results of the experiment indicate that size-based traffic
feature performed as good or better than time-based traffic feature,
and the combination of the two features improved the classification
accuracy, although only marginally.

It should be noted that size-based feature is not a solution to all
problems. It worked well in DoS and Probing attacks but may not work
for other types of attacks. In general, "size-based traffic" feature should
be combined with "time-based traffic" features in order to detect a wide
range of attacks.
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